$$\lim_{n\rightarrow+\infty}0,01n^3+n.$$ | $$\lim_{n\rightarrow+\infty}n^3-n.$$ | $$\lim_{n\rightarrow+\infty} \dfrac{3^n}{3^n+2^n}$$ |
$\displaystyle{\lim_{n\rightarrow+\infty}n^3-n}$ | $=$ | $\displaystyle{\lim_{n\rightarrow+\infty}n^3\left( \dfrac{n^3}{n^3}-\dfrac{n}{n^3} \right) }$ |
$=$ | $\displaystyle{\lim_{n\rightarrow+\infty}n^3\left( 1- \dfrac{1}{n^2}\right)}$. |
$\displaystyle{\lim_{n\rightarrow+\infty}\dfrac{3^n}{3^n+2^n}}$ | $=$ | $\displaystyle{\lim_{n\rightarrow+\infty}\dfrac{3^n}{3^n\left( \dfrac{3^n}{3^n}+\dfrac{2^n}{3^n} \right)}}$ |
$=$ | $\displaystyle{\lim_{n\rightarrow+\infty}\dfrac{1}{1+\left( \dfrac{2}{3} \right)^n}}$ |
$v_{n+1}$ | $=$ | $-\dfrac{10}{9}+u^2_{n+1}$ |
$=$ | $-\dfrac{10}{9}+1+0,1u^2_n$ | |
$=$ | $-\dfrac{1}{9}+0,1u^2_n$ | |
$=$ | $0,1\left( \dfrac{-\frac{1}{9}}{0,1}+u^2_n \right)$ | |
$=$ | $0,1\left( -\dfrac{10}{9} +u^2_n\right)$ | |
$=$ | $0,1v_n$. |