$A$ | $=$ | $5\sqrt{96}+\sqrt{24}+2\sqrt{54}$ |
$=$ | $5\times4\sqrt{6}+2\sqrt{6}+2\times3\sqrt{54}$ | |
$=$ | $28\sqrt{6}$. |
$B$ | $=$ | $\sqrt{20}\times\sqrt{80}\times\sqrt{45}$ |
$=$ | $2\sqrt{5}\times4\sqrt{5}\times3\sqrt{5}$ | |
$=$ | $120\sqrt{5}$. |
$C$ | $=$ | $(2\sqrt{2}-\sqrt{7})^2$ |
$=$ | $8-4\sqrt{14}+7$ | |
$=$ | $15-4\sqrt{14}$. |
$(a-b)(a^2+ab+b^2)$ | $=$ | $a^3+a^2b+ab^2-ba^2-ab^2-b^3$ |
$=$ | $a^3-b^3$. |
$\dfrac{1}{n}-\dfrac{1}{n+1}$ | $=$ | $\dfrac{n+1}{n(n+1)}-\dfrac{n}{(n+1)n}$ |
$=$ | $\dfrac{n+1-n}{n(n+1)}$ | |
$=$ | $\dfrac{1}{n^2+n}$. |
$(\text{e}^{x}-\text{e}^{-x})^2 +2$ | $=$ | $(\text{e}^x)^2-2\text{e}^x\times\text{e}^{-x}+(\text{e}^{-x})^2+2$ |
$=$ | $\text{e}^{2x}-2\text{e}^0+\text{e}^{-2x}+2$ | |
$=$ | $\text{e}^{2x}-2+\text{e}^{-2x}+2$ | |
$=$ | $\text{e}^{2x}+\text{e}^{-2x}$. |
$\left\{\begin{array}{rcl}3x-2y & = & 5 \ x+y & = & 1 \end{array}\right.$ | |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcl}3x-2y & = & 5 \ y & = & 1-x \end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcl}3x-2(1-x) & = & 5 \ y & = & 1-x \end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcl}5x & = & 7 \ y & = & 1-x \end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcl}x & = & \dfrac{7}{5} \ y & = & 1-\dfrac{7}{5} \end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcl}x & = & \dfrac{7}{5} \ y & = & -\dfrac{2}{5} \end{array}\right.$ |
$V_{n+1}$ | $=$ | $625-C_{n+1}$ |
$=$ | $625-(0,92C_n+50)$ | |
$=$ | $575-0,92C_n$ | |
$=$ | $0,92\left( \dfrac{575}{0,92}-C_n \right)$ | |
$=$ | $0,92\left( 625-C_n \right)$ | |
$=$ | $0,92V_n$. |
$f(x)$ | $=$ | $(2x^2+1)(x-1)$ |
$=$ | $2x^3-2x^2+x-1$. |
$g'(t)$ | $=$ | $20\left( -0,1\text{e}^{-0,1t}-(-1)\times\text{e}^{-t} \right)$ |
$=$ | $20\left( -0,1\text{e}^{-0,1t}+\text{e}^{-t} \right)$. |
$h'(x)$ | $=$ | $\dfrac{u'(x)v(x)-v'(x)u(x)}{v^2(x)}$ |
$=$ | $\dfrac{\text{e}^x(\text{e}^x-1)-\text{e}^x(\text{e}^x+1)}{ (\text{e}^x-1)^2 }$ | |
$=$ | $\dfrac{\text{e}^x(\text{e}^x-1-(\text{e}^x+1))}{ (\text{e}^x-1)^2 }$ | |
$=$ | $\dfrac{-2\text{e}^x}{ (\text{e}^x-1)^2 }$ | |
$=$ | $-\dfrac{2\text{e}^x}{ (\text{e}^x-1)^2 }$. |