$u_{n+1}+v_{n+1}$ | $=$ | $\dfrac{2u_n+v_n}{4}+\dfrac{u_n+2v_n}{4}$ |
$=$ | $\dfrac{2u_n+v_n+u_n+2v_n}{4}$ | |
$=$ | $\dfrac{3u_n+3v_n}{4}$ | |
$=$ | $\dfrac{3}{4}(u_n+v_n)$. |
$v_{n+1}-u_{n+1}$ | $=$ | $\dfrac{u_n+2v_n}{4}-\dfrac{2u_n+v_n}{4}$ |
$=$ | $\dfrac{u_n+2v_n-2u_n-v_n}{4}$ | |
$=$ | $\dfrac{v_n-u_n}{4}$ | |
$=$ | $\dfrac{1}{4}(v_n-u_n)$. |
$u_n+v_n-(v_n-u_n)$ | $=$ | $80\times\left( \dfrac{3}{4} \right)^n-40\times\left( \dfrac{1}{4} \right)^n$ |
$2u_n$ | $=$ | $80\times\left( \dfrac{3}{4} \right)^n-40\times\left( \dfrac{1}{4} \right)^n$ |
$u_n$ | $=$ | $40\times\left( \dfrac{3}{4} \right)^n-20\times\left( \dfrac{1}{4} \right)^n$. |