$a=\sqrt{2}$ | $b=\dfrac{1}{4}$ | $c=-\sqrt{49}$ | $d=\dfrac{12+4}{4}$ |
$f(x)=(x+3)(2x-7)$ | $g(t)=(2t-3)^2$ |
$f(x)$ | $=$ | $(x+3)(2x-7)$ |
$=$ | $2x^2-7x+6x-21$ | |
$=$ | $2x^2-x-21$. |
$g(t)$ | $=$ | $(2t-3)^2$ |
$=$ | $(2t^)2-12t+3^2$ | |
$=$ | $4t^2-12t+9$. |
$x_1 = \sqrt{48}-2\sqrt{12}$ | $x_2 = \dfrac{11}{4\sqrt{75}}$ |
$x_1$ | $=$ | $\sqrt{48}-2\sqrt{12}$ |
$=$ | $\sqrt{16\times3}-2\sqrt{4\times3}$ | |
$=$ | $\sqrt{16}\sqrt{3}-2\sqrt{4}\sqrt{3}$ | |
$=$ | $4\sqrt{3}-2\times2\sqrt{3}$ | |
$=$ | $4\sqrt{3}-4\sqrt{3}$ | |
$=$ | $0$. |
$\dfrac{11}{4\sqrt{75}}$ | $=$ | $\dfrac{11}{4\sqrt{25\times3}}$ |
$=$ | $\dfrac{11}{4\sqrt{25}\sqrt{3}}$ | |
$=$ | $\dfrac{11}{4\times5\sqrt{3}}$ | |
$=$ | $\dfrac{11}{20\sqrt{3}}$ | |
$=$ | $\dfrac{11}{20\sqrt{3}}\times\dfrac{\sqrt{3}}{\sqrt{3}}$ | |
$=$ | $\dfrac{11\sqrt{3}}{20\times3}$ | |
$=$ | $\dfrac{11\sqrt{3}}{60}$ | |
$=$ | $\dfrac{11}{60}\sqrt{3}$. |
$h(x)=5x+2x^2$ | $i(x)=\dfrac{2}{5}x^3-x^2+3x$ |
$h(x)$ | $=$ | $5x+2x^2$ |
$=$ | $x(5+2x)$. |
$i(x)$ | $=$ | $\dfrac{2}{5}x^3-x^2+3x$ |
$=$ | $x\left( \dfrac{2}{5}x^2-x+3 \right)$. |
$BC^2$ | $=$ | $AB^2+AC^2$ |
$=$ | $(7\sqrt{10})^2+(2\sqrt{59})^2$ | |
$=$ | $7^2\sqrt{10}^2+2^2\sqrt{59}^2$ | |
$=$ | $49\times10+4\times59$ | |
$=$ | $726$. |
a = 5.0 for i in range(1,6): a = 2*a-1